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The author has very recently developed a qualitative theory of the mag-
netic currents bascd on a topological analysis of the current density vector
field which leads to its description in terms of vortices encased by scparatrices.

This paper reports on its application to a proper definition of localized and
delocalized currents,

The electronic current densities induced in molecules by external magnetic
fields are at present calculated with very good accuracy, especially [or small
molecules, and the results are usually presented in the form of maps in carefully
chosen planes. Both the representation and the extraction of useful information
out of these maps is very hard, not least because the current density field is an
R3-+R? function. The present author has reported [1-3] very recently on a
qualitative theory that greatly simplifies the global description of the vector
field. This theory is based on a topological analysis of the field. The most
interesting fcatures of the vector field are associated with its singularities {the
points where the current density vanishes) which may be classified in a way
resembling that of Collard and Hall [4]. The discussion will be restricted to
divergenceless currents, a property that the total current, j(r}), possesses.
Orbital currents, j,(r), however, are not generally divergenceless. An exchange
current [3), jz*"(r), may be defined in terms of the non-local part N of the
potential in the hamiltonian for orbital W', using the source function

Sp(r)=(—2¢e/f) Im (W, N). (1)
The exchange current is then calculated
Ji ()= VI(r), (2)
where the potential I,(r) is given by
=g fare 40 G)
A complete orbital current, j;“(r}, may be defined
=l i {4)
that is divergenceless,
Vojpt=1 {5)
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It is to this field j,© or to the total {many-electron) current j that the theory

applies in the form presented here. The extension to include the standard

orbital current j, could be made by considering some new topological elements.
Near a singular point the vector field may be described by the D-tensor

D=Vj (6)

calculated at the singular point. The nature of the eigenvalues of this traceless
tensor allows a classification of the singularities of the field :

(a) Isolated singularities when the D-tensor has three non-zero eigenvalues.
Two of the eigenvalues must have the same sign (for its real parts, in the complex
case) and the associated eigenvectors define a plane tangent to the separatrix at
the singular point. Separatrices are surfaces filled by asymprotic lines, that is,
by lines of current which originate and terminate at singular points. The
third eigenvector defines an isolated asymptotic line without special interest.

{(b) Stagnation lines are formed by singular peoints where the D-tensor has
only two non-zero eigenvalues. The eigenvector associated with the zero
eigenvalue is a tangent to the stagnation line. Two kinds of flow near the

stagnation line may exist, depending on whether the two eigenvectors are real
or not,

(P) (1) Saddle lines are the stagnation lines formed by points where the
D-tensor has two real eigenvalues.

(i1) Vortical lines are the stagnation lines formed by points where the
D-tensor has complex eigenvalues.
The set of all stagnation lines of the current density in a molecule forms
the so-called stagnation graph, which may be disconnected.

(¢) Critical points are the singular points with three zero eigenvalues. These
are two points of the stagnation lines where a change of régime of flow may
occur ; this will be associated with a branching of the stagnation line, con-
verting the critical point into a vertex of the stagnation graph.

The major kinds of flow near singularitics are sketched in figure 1.

"Two kinds of scparatrices are found. Isolated singularities generate topo-
logically spherical separatrices ; these must satisfy the Poincaré-Hopf theorem
[6, 71 implying that each separatrix has two isolated singular points, a source
and a sink of asymptotic lines. Separatrices of a second kind are generated
by saddle lines ; their shape may be described as that of a double cone having
one or more saddle lines as geratrices and the two vertices coinciding with
critical points.

The stagnation graph obeys the following two fundamental rules. {1
There is one and only one stagnation line extending to infinity, a vorrical line
which, at large distances from the molecule, becomes parallel to the magnetic
field. (2) At the critical points the branchings that may occur conserve the
total index of the stagnation lines. The topological index of a stagnation line
is defined in 4 way similar to that used for singularities of planar fields [6, 7],
+1 for vortical lines and —1 for the simplest saddle lines of the type sketched
in figure 1 () (1).

As a consequence of these rules, the stagnation graph may have one or more
connected parts. Each of these parts is constituted by a vortical line (open for
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Figure 1. }’iajor régimes of flow near singularities, (a) The isolated singularity has
associated two positive eigenvalues that define the asymptotic plane (1)-(2) lzcaliv
tangent to a §phe’rical separatrix. (b)) (i} At the saddie line meet four scmi-plane;
d-efmed by directions (1) and {2) which define the separatrices. {(ii) The vortical
line goes through the core of the flow shown here in cross section,

{n

(@) (b} {)

Figure 2. Topological description of the current density induced in the benzene molecule
by a mdgnetic field perpendicular to the molecular plane. The stagnation graph
(a #/3 sector is displaved in (a)) has four critical points at more than 0-7 a, out of
the molecular plane. Sections of the separatrices at the molecular plane (b) and
0-7 a, out of that plane {c) arc also shown. Spherical separatrices exist around
each carbon atom, encasing a toroidal vortex each. (Based on calculations reported

by Lazzeretti et al. [21, 22].)
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the leading part and closed for all the other connected parts) and the stagnation
lines and vertical lines into which it branches at the critical points satisfying the
total index rule above,

This qualitative theory of the electronic current density in molccules leads
to the description of the currents in terms of axial or toroidal vortices encased
by well defined separatrices. This sheds new light on the concept of localization
of molecular properties, especiaily for the interpretation of magnetic properties
in terms of the current density. The rdle of delocalized currents in the proper-
ties of cyclic, conjugated hydrocarbons is an unresolved problem {1, 8-22].

In figure 2 is shown the stagnation graph of benzene and the sections of the
separatrices by two planes, the molecular plane and another one (7 a, above or
below it, based on the results of very recent calculations by Lazzeretti and
co-workers {21, 22]. The non-equivalent vortices are numbered (1) to (6) to
show the correspondence between the stagnation graph and the maps of the
current density. The toroidal vortex (6) is entirely contained between levels
+ 07 a; Vortex (3) and the six equivalent vortices (4) are the only para-
magnetic ones. Vortices (1), (2) and (3) may be associated with a ring current
now defined in a rigorous way. All the other vortices correspond to well
localized circulations. It should be observed how well this interpretation fits
with the discussion of the concepts of localized and delocalized currents that
the present author reported [16], based on model wavefunctions.

I greatly benefited from discussion with Dr. Paolo Lazzeretti and Dr.
Riccardo Zanasi of the University of Modena (Italy) of some of their recent
calculations on benzene which are cited here. 1 am indebted to them for
making available preprints of their work.
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